Primality of Repunit A small reduction of the exponent *ver. 1.0 - Jan 2011*

Giovanni Di Maria 93100 Caltanissetta – Sicilia Italia

email: calimero22@yahoo.it

Abstract

A repunit is a number consisting of copies of the single digit 1. Examples of repunit are 11, 1111, 11111. A repunit prime is a repunit that is also a prime number.

In base 10, repunits have the form: $\frac{(10^p - 1)}{9}$ where p is a prime number.

Usually, people use Fermat's little theorem, to test the pseudo-primality of Repunit numbers. I remember that this theorem states that if p is a prime number, then for any integer a, $a^p - a$ will be evenly divisible by p. This can be expressed in the notation of modular arithmetic as follows:

$$a^{Rp} \equiv a \pmod{Rp}$$

A variant of this theorem is stated in the following form: if p is a prime and a is an integer coprime to p, then $a^{(p-1)-1}$ will be evenly divisible by p. In the notation of modular arithmetic:

$$a^{Rp-1} \equiv 1 \pmod{Rp}$$

In this paper, i show that the exponent can be reduced a bit.

1 Introduction

2) Let *Rp* be $\frac{(10^{p}-1)}{9}$ (Repunit);

In order to reduce the exponent, i can say that Rp is a probable prime number if:

$$2^{\frac{Rp-1}{2p}} \equiv 10^n (mod Rp)$$

where $n \in \{1..p\}$

In other words, i can say that:

- If the residual is in the form 10ⁿ (where 1 ≤ n ≤ p), then *Rp* is a probable prime number;
- If base-10 logarithm of the residual is integer, then *Rp* is a probable prime number.

2 Results

Now i show you the residuals of the formula:

$$2^{\frac{Rp-1}{2p}} \equiv 10^n (mod Rp)$$

on known Repunit Primes (and probable primes) in the following table.

R _p	$2^{\frac{Rp-1}{2p}} mod Rp$	Expansion	
R ₁₉	108	100,000,000	
R ₂₃	10 ¹²	1,000,000,000,000	
R ₃₁₇	1062	10000000 Too large to show	
R ₁₀₃₁	10 ⁶⁹⁷	10000000 Too large to show	
R ₄₉₀₈₁	10^{46706}	10000000 Too large to show	
R ₈₆₄₅₃	10 ²²³⁷³	10000000 Too large to show	
R ₁₀₉₂₉₇	1092105	10000000 Too large to show	
R ₂₇₀₃₄₃	10 ¹⁸³¹⁰⁰	10000000 Too large to show	

3 Comparative table of the exponents

I compare here the size of exponents, represented in binary notation. In other words, i count the number of bits.

The two formulas to compare are:

$$a^{Rp} \equiv a \pmod{Rp}$$

versus

$$2^{\frac{Rp-1}{2p}} \equiv 10^n (mod Rp)$$

R _p	Size of exponent <i>Rp</i> (number of bits)	Size of exponent $\frac{Rp-1}{2p}$ (number of bits)	Bits saved
R ₁₉	60	55	5
R ₂₃	74	68	6
R ₃₁₇	1050	1041	9
R ₁₀₃₁	3422	3411	11
R ₄₉₀₈₁	163041	163024	17
R ₈₆₄₅₃	287188	287171	17
R ₁₀₉₂₉₇	363074	363056	18
R ₂₇₀₃₄₃	898057	898038	19

4 Conclusions

By this formula, saving time and calculations is very small. It does not help to solve the problems of primality. However, i have found a way to reduce the exponent a bit. Excuse my English, not very good, but I'm Italian.

Good luck to all.

Giovanni Di Maria Caltanissetta, Jan 3, 2011