Primality of Repunit An absurd hypothesis: The number of symbols ver. 1.2 - Jan 2011 Last update: Feb 11, 2011

Giovanni Di Maria 93100 Caltanissetta – Sicilia Italia

email: calimero22@yahoo.it

Abstract

There is a common feature that characterizes the primes repunit. In this article I show this property, hoping that it is wrong.

Introduction

A repunit is a number consisting of copies of the single digit 1. Examples of repunit are 11, 1111, 11111. A repunit prime is a repunit that is also a prime number.

In base 10, repunits have the form: $\frac{(10^p - 1)}{9}$ where p is a prime number.

I start my article, saying that the number of digits of a repunit prime number, <u>in</u> <u>base 10</u>, must be odd. We all know that.

We know that p, in Rp, must not only be odd, but must also be a prime number. In particular, the number of digits "1" in a prime repunit, in base 10, must always be odd. In fact:

Repunit	Decimal expansion	Number of digit "1"	Is it Odd?
R ₁₉	11111111111111111111	There are 19 "1"	19 is odd
R ₂₃	11111111111111111111111111111	There are 23 "1"	23 is odd
R ₃₁₇	1111111111 and other 307 "1"	There are 317 "1"	317 is odd
R ₁₀₃₁	11111111111 and other 1021 "1"	There are 1031 "1"	1031 is odd
R ₄₉₀₈₁	11111111111 and other 49071 "1"	There are 49081 "1"	49081 is odd
R ₈₆₄₅₃	1111111111 and other 86443 "1"	There are 86453 "1"	86453 is odd
R ₁₀₉₂₉₇	11111111111 and other 109287 "1"	There are 109297 "1"	109297 is odd
R ₂₇₀₃₄₃	11111111111 and other 270333 "1"	There are 270343 "1"	270343 is odd

The first requirement of Rp to be prime, in base 10, is that p must be odd (except for R2).

Conjecture

So, I wanted to see if, in other bases, there are other properties. I made many tests and experiments and I discovered the following:

a Repunit number is a prime number or probable prime number IF:

The number of its symbols '3', in base 4, are even, AND The number of its symbols '0', in base 16, are even, AND The number of its symbols '56', in base 64, are even, AND The number of its symbols '7', in base 128, are even, AND The number of its symbols '121', in base 128, are even, AND The number of its symbols '39', in base 256, are even, AND The number of its symbols '255', in base 256, are even, AND The number of its symbols '36', in base 512, are even, AND The number of its symbols '60', in base 512, are even, AND The number of its symbols '74', in base 512, are even, AND The number of its symbols '76', in base 512, are even, AND The number of its symbols '151', in base 512, are even, AND The number of its symbols '182', in base 512, are even, AND The number of its symbols '263', in base 512, are even, AND The number of its symbols '306', in base 512, are even, AND The number of its symbols '309', in base 512, are even, AND The number of its symbols '328', in base 512, are even, AND The number of its symbols '358', in base 512, are even, AND The number of its symbols '361', in base 512, are even, AND The number of its symbols '366', in base 512, are even, AND The number of its symbols '404', in base 512, are even, AND The number of its symbols '433', in base 512, are even, AND The number of its symbols '434', in base 512, are even, AND The number of its symbols '439', in base 512, are even, AND The number of its symbols '495', in base 512, are even, AND The number of its symbols '503', in base 512, are even.

Note that the quantity 0 is considered as even.

Examples

For R_{19} , the number of symbols '3', in base 4, is 10 (even). Indeed R_{19} , in base 4, is 331223131122230223301013013013.

For R_{23} , the number of symbols '3', in base 4, is 6 (even). Indeed R_{23} , in base 4, is 2112211112210123211312221213013013013.

For R_{1031} , the number of symbols '74', in base 512, is 2 (even). Indeed R₁₀₃₁, in base 512, is {3, 171, 420, 109, 165, 270, 388, 218, 339, 295, 187, 327, 510, 277, 344, 7, 478, 438, 74, 241, 352, 475, 86, 61, 24, 148, 348, 360, 506, 268, 57. 496, 345, 54, 232, 24, 155, 251, 79, 107, 264, 394, 333, 257, 232, 41, 494, 65, 277, 95, 269, 399, 369, 30, 334, 465, 159, 166, 443, 448, 33, 290, 43, 194, 46, 278, 40, 56, 487, 230, 311, 186, 243, 218, 379, 479, 23, 185, 162, 172, 39, 308, 315, 250, 292, 473, 218, 130, 470, 231, 28, 263, 285, 437, 345, 488, 432, 226, 350, 415, 260, 143, 407, 359, 477, 411, 420, 32, 31, 252, 393, 143, 362, 259, 126, 419, 94, 381, 165, 466, 414, 376, 171, 374, 39, 295, 47, 451, 57, 122, 134, 113, 332, 99, 18, 6, 352, 259, 253, 324, 290, 21, 417, 40, 352, 476, 334, 78, 104, 232, 58, 472, 98, 387, 37, 510, 493, 357, 80, 233, 319, 198, 244, 416, 353, 380, 85, 274, 174, 476, 121, 320, 95, 315, 327, 167, 373, 53, 484, 509, 485, 461, 113, 112, 251, 142, 161, 415, 122, 240, 63, 41, 124, 329, 263, 97, 456, 441, 191, 235, 185, 336, 354, 79, 426, 166, 367, 411, 134, 25, 363, 109, 11, 481, 232, 258, 97, 3, 245, 498, 75, 118, 442, 399, 216, 213, 24, 298, 57, 140, 85, 162, 84, 42, 210, 464, 343, 73, 142, 438, 423, 267, 152, 177, 74, 473, 412, 501, 268, 63, 88, 66, 430, 349, 11, 314, 184, 256, 385, 367, 508, 502, 2, 14, 227, 457, 103, 455, 56,

And so on.

Results

I have implemented an algorithm to calculate and verify the conjecture. The results are as follows:

- Candidate=R₃ (exception)
- Candidate=R₅
- (exception) (exception)
- Candidate=R₁₁
- Candidate= R_{19}
- Candidate=R₂₃
 Candidate=R₁₀₇
- (exception)
- Candidate=R₃₁₇
- Candidate=R₁₀₃₁
- Candidate=R₄₉₀₈₁
- Candidate=R₈₆₄₅₃
- Candidate=R₁₀₉₂₉₇
- Candidate=R₂₇₀₃₄₃

The only exceptions are R_3 , R_5 , R_{11} , R_{107} that validate the conjecture, but they are composite numbers. It's useful to perform a small factorization to find any factors.

Current tests

Currently I have tested my conjecture for exponents up to

and there are NO other candidate repunit prime numbers $(R_{\mbox{\tiny p}}).$

Thanks to Danilo Nitsche for helping me in research.

Conclusions

At moment I'm trying the conjecture with greatest exponents, and I hope that it is wrong. Excuse my English, not very good, but I'm Italian.

Good luck to all.

Giovanni Di Maria Caltanissetta, Jan 19, 2011

Appendix A

Mathematica source code

```
(*----Funzione delle quantità di simboli in altre basi-----*)
Test[r ]:=Block[{colpi},
    colpi=0;
    If[!EvenQ[DigitCount[r, 4, 3]], Return[colpi], colpi++];
    If[!EvenQ[DigitCount[r,16,0]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r, 64, 56]], Return[colpi], colpi++];
    If[!EvenQ[DigitCount[r,128,7]],Return[colpi],colpi++];
If[!EvenQ[DigitCount[r,128,121]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,256,39]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,256,255]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,36]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,60]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,74]],Return[colpi],colpi++];
If[!EvenQ[DigitCount[r,512,76]],Return[colpi],colpi++];
If[!EvenQ[DigitCount[r,512,151]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,182]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,263]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,306]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,309]],Return[colpi],colpi++];
    If [!EvenQ[DigitCount[r,512,328]], Return[colpi], colpi++];
If[!EvenQ[DigitCount[r,512,358]], Return[colpi], colpi++];
    If[!EvenQ[DigitCount[r, 512, 361]], Return[colpi], colpi++];
    If[!EvenQ[DigitCount[r,512,366]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,404]],Return[colpi],colpi++];
    If [!EvenQ[DigitCount[r,512,433]], Return[colpi], colpi++];
If[!EvenQ[DigitCount[r,512,434]], Return[colpi], colpi++];
    If[!EvenQ[DigitCount[r,512,439]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,495]],Return[colpi],colpi++];
    If[!EvenQ[DigitCount[r,512,503]],Return[colpi],colpi++];
    Return[colpi];
1
(*----Ci sono fattori Piccoli?-----*)
FattoriPiccoli[r_,k_]:=Block[{i,risultato,fattore,LimiteFattoriPiccoli},
risultato=0;
LimiteFattoriPiccoli=100;
For[i=1,i<=LimiteFattoriPiccoli,i++,</pre>
    fattore=(i*2)*k+1;
    If[PrimeQ[fattore] && Mod[r,fattore]==0,
       risultato=1;
       Break[]];
    1:
    Return[risultato];
1
(*----*)
tot=0;
colpimax=0;
Monitor
   For[k=1, k<=40000000, k++,
       If[Mod[k,10000]==0,Print["Saved at k=",k," at ",DateString[]];NotebookSave[]];
       If[!PrimeQ[k],Continue[]];
       tot++;
       ru = (10^k - 1) / 9;
       colpi=0;
        If[ FattoriPiccoli[ru,k]==0,colpi=Test[ru]];
       If[colpi>=colpimax,
           colpimax=colpi;
           out01="A Good Candidate is ";
           out02=StringJoin["R(",ToString[k],")"];
           out02=Style[out02,{Red,Bold}];
out03=StringJoin[" Shots = ",ToString[colpi]];
           Print[out01,out02,out03];
      ];
];
,k]
```

Appendix B

Program results as screenshot

А	Good	. (andi	da	te	is	R(2)		Sł	nots =	= 0		
А	Good	. (andi	da	te	is	R(3)		Sł	nots =	= 0		
А	Good	. (andi	da	te	is	R(5)		Sł	nots =	= 0		
А	Good	. (andi	da	te	is	R(7)		Sł	nots =	= 0		
А	Good	. (andi	da	te	is	R(11	L)	0	Shots	= 2	26	
А	Good	. (andi	da	te	is	R(19))	0	Shots	= 2	26	
А	Good	. (andi	da	te	is	R (23	3)	S	Shots	= 2	26	
А	Good	. (andi	da	te	is	R(31	.7)		Shot	s =	26	
А	Good	. (andi	da	te	is	R(10)31)		Sho	ts :	= 26	5
Sa	ved	at	k=1	00	00	at	Thu	20	Jan	2011	11	:09:	:11
Sa	ved	at	k=2	00	00	at	Thu	20	Jan	2011	11	:09:	:13
Sa	ved	at	k=3	00	00	at	Thu	20	Jan	2011	11	:09:	:16
Sa	ved	at	k=4	00	00	at	Thu	20	Jan	2011	11	:09:	:20
А	Good	. (andi	da	te	is	R(49	081	.)	Sho	ots	= 2	26
Sa	ved	at	. k=5	00	00	at	Thu	20	Jan	2011	11	:09:	24
Sa	ved	at	k=6	00	00	at	Thu	20	Jan	2011	11	:09:	:29
Sa	ved	at	k=7	00	00	at	Thu	20	Jan	2011	11	:09:	:34
Sa	ved	at	k=8	00	00	at	Thu	20	Jan	2011	11	:09:	41
А	Good	. (andi	da	te	is	R (86	5453	3)	Sho	ots	= 2	26
Sa	ved	at	. k=9	00	00	at	Thu	20	Jan	2011	11	:09:	:48
Sa	ved	at	k=1	00	000	at	Thu	1 20) Jar	n 2013	1 1	1:09):57
А	Good	. (andi	da	te	is	R(10	929	7)	Sl	not	s =	26
Sa	ved	at	k=1	10	000	at	Thu	1 20) Jar	n 2011	1 1	1:10):06
Sa	ved	at	. k=1	20	000	at	Thu	ı 20) Jar	n 2013	1 1	1:10):15
Sa	ved	at	k=1	30	000	at	. Thu	ı 20) Jar	n 2011	1 1	1:10):25
Sa	ved	at	k=1	40	000	at	. Thu	ı 20) Jar	n 2011	1 1	1:10):38
Sa	ved	at	k=1	50	000	at	Thu	1 20) Jar	n 2011	1 1	1:10):50
Sa	ved	at	k=1	60	000	at	. Thu	ı 20) Jar	n 2011	1 1	1:11	:01
Sa	ved	at	k=1	70	000	at	Thu	ı 20) Jar	n 2011	1 1	1:11	:15
Sa	ved	at	k=1	80	000	at	Thu	ı 20) Jar	n 2011	1 1	1:11	:30
Sa	ved	at	k=1	90	000	at	. Thu	ı 20) Jar	n 2011	1 1	1:11	:49
Sa	ved	at	k=2	00	000	at	Thu	ı 20) Jar	n 2011	1 1	1:12	2:07
Sa	ved	at	k=2	10	000	at	Thu	ı 20) Jar	n 2011	1 1	1:12	2:28
Sa	ved	at	k=2	20	000	at	Thu	ı 20) Jar	n 2013	1 1	1:12	2:43
Sa	ved	at	k=2	30	000	at	Thu	ı 20) Jar	n 2011	1 1	1:13	3:01
Sa	ved	at	k=2	40	000	at	. Thu	ı 20) Jar	n 2011	1 1	1:13	3:19
Sa	ved	at	k=2	50	000	at	Thu	ı 20) Jar	n 2011	1 1	1:13	3:40
Sa	ved	at	k=2	60	000	at	Thu	ı 20) Jar	n 2011	1 1	1:13	3:59
Sa	ved	at	k=2	70	000	at	Thu	ı 20) Jar	n 2011	1 1	1:14	1:19
A Good Candidate is R(270343) Shots = 26													
Sa	ved	at	k=2	80	000	at	. Thu	ı 20) Jar	n 2013	1 1	1:14	1:39
Sa	ved	at	k=2	90	000	at	Thu	ı 20) Jar	n 2011	1 1	1:15	5:00
Ou	t[19	6]	= \$A	bo	rte	d							

Giovanni Di Maria

Index

Introduction	2
Conjecture	3
Examples	4
Results	5
Current tests	6
Conclusions	7
Appendix A	8
Appendix B	9
11	